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Neutrinos are near-massless fermions that interact via the weak nuclear force only. Experiments at
neutrino observatories such as the Super-Kamiokande have shown that neutrinos can undergo flavour
transformations as they propagate through space. In this work, we aim to study the reasons and
derive the probabilities of such oscillations for both the two- and three- neutrino cases and analyse
the results to make a few observations about the physical properties of neutrinos. Furthermore, we
also look at the symmetries that are associated with this phenomenon, particularly that of CPT
invariance and CP violation by quantifying the asymmetry in terms of the Jarlskog invariant.
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I. INTRODUCTION

The Standard Model is a theory that describes three
out of the four fundamental forces in the Universe and
classifies elementary particles into distinct groups. Gen-
erally, these particles can be distinctly classified into
two major classes: bosons — particles that obey Bose-
Einstein statistics and have an integer spin; and fermions
— particles that obey Fermi-Dirac statistics and have
half-integer spin. Another form of classification can be
made on the basis of the interactions that a particle un-
dergoes. Particles that undergo strong interactions (with
the strong nuclear force) are called hadrons and the ones
that do not undergo any such interactions are called lep-
tons. The particle we are interested in is the neutrino,
which is a lepton. The neutrino is an electrically-neutral
fermion that only interacts via the weak nuclear force
and gravity. As the weak nuclear force has a very short
range and gravitational interactions are extremely weak
at the subatomic level, neutrinos are usually elusive and
hard to detect.
Neutrinos can occur in one of three different types or
“flavours” (although a more accurate term is generation):
electron neutrinos (νe), muon neutrinos (νµ), or tau neu-
trinos (ντ ); each corresponding to the fermions involved
in their creation or annihilation [1]. These forms are usu-
ally observed when a neutrino interacts with other parti-
cles. For every neutrino, there also exists a corresponding
antiparticle called the antineutrino (denoted by ν̄) which
is also an electrically-neutral fermion, although with an
opposite chirality (we briefly cover chirality in the section
on symmetries).
Neutrinos also have some peculiar properties, with once
such property being — as a well-known science educa-
tor put it — that neutrinos are “identity agnostic” [2].
When neutrinos travel through space, they can be ob-
served in one of three mass states. When they interact
with matter, however, they are observed to be in their
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flavour states. Interestingly, there is no one-to-one corre-
spondence between these two “identities”. It is possible
for a neutrino which was produced in a certain flavour to
later be measured in a completely different flavour. For
example, if an electron neutrino was created in a decay
reaction, then it is possible for the same neutrino to be
measured as a tau neutrino at a later point in space. This
phenomenon — called neutrino oscillation — was first
predicted by Italian-Soviet physicist Bruno Pontecorvo in
1957 [3, 4] and experimentally verified in 1998 and 2001
by Takaaki Kajita of the Super-Kamiokande Observatory
and Arthur McDonald of Sudbury Neutrino Observatory
for which they received the 2015 Nobel Prize in Physics
[5].
In this work, we study the reasons behind neutrino os-
cillations and derive the probabilities of neutrino flavour
changes in vacuum for both the two and three neutrino
cases. We also mention the parameters affecting this
probability followed by a discussion of some basic prop-
erties of neutrinos which can be inferred from the deriva-
tions made. Finally, we discuss this problem from the
point of view of symmetries and look at the symmetries
that are associated with this problem. We also quantify
the asymmetries that occur and briefly state the proper-
ties that can be derived from the violation of such sym-
metries. We will be using natural units (~ = c = 1)
throughout this paper unless specified otherwise.

II. LEPTONIC MIXING

As we saw earlier, neutrinos can be found in three
distinct flavours: electron, muon and tau neutrinos.
Each flavour has a corresponding antineutrino associated
with it. We also mentioned that neutrinos are capable
of flavour change. As it turns out, this oscillatory be-
haviour happens because neutrino flavours are actually
a superposition of different neutrino masses. This is
called leptonic mixing because the neutrino flavours
are a mixture of neutrino masses and vice-versa. Let
us define this more formally. Consider that there is a
spectrum of neutrino mass eigenstates {νi}, i = 1, 2, 3
each corresponding to an eigenvalue mi which is the
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mass of the neutrino. The flavours of the neutrino form
another orthogonal basis like the mass does. These can
be denoted by {να}, α = e, µ, τ . The ability to express
the three flavours of the neutrino as a superposition
of mass eigenstates is called mixing. For example,
consider a leptonic decay of the form W+ → νi + ¯̀

α

where `α is a charged lepton of a flavour α. Due to
mixing, the neutrino that is formed in the eigenstate νi
is not necessarily of the same flavour α but is in fact a
superposition of multiple flavours — out of which one
is observed upon measurement. Mathematically, the
consequence of mixing is that the mass matrix is not
diagonal when written in the flavour basis.

There must exist a basis transformation matrix be-
tween the mass basis and flavour basis. Let us de-
note this by U . This unitary transformation which re-
lates the flavour eigenstates to the mass eigenstates is
called the lepton mixing matrix, or the Pontecorvo-Maki-
Nakagawa-Sakata (PMNS) matrix [6]. Therefore,

νe(x)
νµ(x)
ντ (x)


L

=

Ue1 Ue2 Ue3
Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3


L

ν1(x)
ν2(x)
ν3(x)


L

(1)

The subscript L is thrown in for some pedanticism. It
denotes that we are dealing with left-handed neutrinos.

We will briefly mention chirality in the section on sym-
metry. Another minor detail to note at this point is that
the quantities να or νi are actually neutrino fields with
an explicit position dependence; however such details are
out of the scope of this paper. We drop the L and x for
the sake of notational simplicity.
Eq. (1) can be written more compactly as

να =
∑
i

Uαiνi (2)

where α = e, µ, τ and i = 1, 2, 3.

Naturally, since the PMNS matrix is a basis transfor-
mation matrix, it is unitary. Therefore UU† = U†U = 1

∑
i

UαiU
∗
βi = δαβ (α, β = e, µ, τ)∑

α

UαiU
∗
αj = δij (i, j = 1, 2, 3) (3)

The PMNS matrix is usually parameterised in terms of
three angles θ12, θ23, and θ13 called the mixing angles;
and a phase δCP called the CP violation phase whose
relevance would be clear in later sections [7, 8]. The
PMNS matrix can then be written as

U =

 c12c13 s12c13 s13e
−iδCP

−s12c23 − c12s13s23e
−iδCP c12c23 − s12s13s23e

−iδCP c13s23

s12s23 − c12s13c23e
−iδCP −c12s23 − s12s13c23e

−iδCP c13c23

 (4)

where cij ≡ cos(θij) and sij ≡ sin(θij). Without loss
of generality, θij ∈

[
0, π2

]
and δCP ∈ [0, 2π)

It is evident from Eq. (2) that the mass-i fraction in

flavour α and the flavour α fraction in mass-i is |Uαi|2.
Therefore, the probability of measuring a mass i when
a lepton `α is produced in the leptonic decay mentioned
above is |Uαi|2.

III. NEUTRINO OSCILLATIONS IN VACUUM

Neutrinos interact very weakly with matter which
makes it very difficult to detect them; however, a charged
lepton (like an electron) that is produced alongside a neu-
trino can easily be detected and its flavour can be identi-
fied. Therefore, we can also determine the flavour of the
neutrino, which is say α. In a similar fashion, the neu-
trino can travel a path length L and then interact with a
detector to produce another charged lepton. This time,
say the flavour identified was β. If it is found that α 6= β,

then a flavour change has occurred. This change, α→ β
is a quantum mechanical phenomenon and thus, we can
find its probability, P (να → νβ).

III.1. Finding the Oscillation Probability

Usually, an ideal oscillation experiment would involve
three steps as elucidated before. The first is a production
of a pure flavour state from a decay process, for example
a charged pion decay that produces νµ, π+ → νµ+µ+.
This flavour eigenstate is a superposition of the mass
eigenstates and the coefficients are given by the PMNS
matrix 1:

1 This is where that distinction between neutrinos and neutrino
fields from Eq. (2) comes into the picture. The relation between
the flavour and mass eigenstates for neutrino states involves the
complex conjugate of the PMNS matrix, as opposed to the matrix
itself for neutrino fields.
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|να〉 =
∑
i

U∗αi |νi〉 (5)

The second step is the propagation of the neutrino.
Each mass eigenstate is an eigenstate of the Hamiltonian.
In its rest frame, the time evolution of the neutrino state
is given by the Schrödinger equation

i
∂

∂t
|νi〉 = Ei |vi〉 (6)

where Ei is the energy of the mith mass. Therefore,

|νi(t)〉 = |νi(0)〉 e−iEit (7)

Therefore, each mass eigenstate evolves with its own
phase factor. Since neutrinos for all practical purposes
are hyper-relativistic, that is, v ≈ c, one can use the re-
lation Ei =

√
p2
i +m2

i , where pi is the momentum of the
i-th mass eigenstate, to make the following approxima-
tion:

Ei =
√
p2
i +m2

i ≈ pi +
m2
i

2pi
≈ E +

m2
i

2E
(8)

It should be noted that we have used the same value
of energy for all mass eigenstates. This can be justified
by the following argument: assume that two different
components νi and νj have energies Ei and Ej . When
they reach the detector, they have phases e−iEit and
e−iEjt respectively. Since the detector can only measure

relative phases, it measures the quantity e−i(Ei−Ej)t,
which over time averages to zero. Therefore, only
components with equal energies are detected [9].

If the neutrino travels a distance L, then the time
taken for the propagation is t ≈ L/c = L. There-
fore, the probability amplitude for propagation is

Prop(νi) = exp
(
−im

2
i

2EL
)

.

The final step is the detection. Assume that the
neutrino interacts with the detector to produce a
charged lepton ¯̀

β . Therefore, the probability amplitude
for it to exist in the mass eigenstate νi is Uβi. Therefore,
this entire process modifies the coherent superposition
that was produced initially and at a later time t, the
neutrino is no longer in a pure flavour eigenstate but a
superposition given by

|ν(t)〉 =
∑
i

U∗αi exp

(
−im

2
i

2E
L

)
Uβi |νi〉 (9)

The probability amplitude for a flavour α neutrino to
have oscillated into a different flavour β at a given time
t is 〈νβ |ν(t)〉, or

P (να → νβ) = |〈νβ |ν(t)〉|2 =

∣∣∣∣∣∑
i

U∗αie
−im

2
i

2E LUβi

∣∣∣∣∣
2

(10)

Eq (10) can be simplified to:

P (να → νβ) = δαβ − 4
∑
i>j

Re[U∗αiUβiUαjU
∗
βj ] sin2

(
∆m2

ijL

4E

)
+ 2

∑
i>j

Im[U∗αiUβiUαjU
∗
βj ] sin

(
∆m2

ijL

2E

)
(11)

where ∆m2
ij = m2

i −m2
j and Re(z) and Im(z) denote

the real and imaginary parts of z, respectively. See the
appendix for the complete derivation of this formula.

III.2. Analysis and Discussion

From Eq. (11), a few observations and remarks can be
made about the nature of neutrino oscillations and more
generally, neutrinos themselves.

1. The probability of oscillation depends on a sum of
sine and sine-squared terms which are inherently
oscillatory in nature. Therefore, the phenomenon
is called neutrino oscillation.

2. The probability is 0 only if ∆m2
ij is zero; which is

possible only if neutrinos are massless or all three

mass states are identical. Since there is strong ex-
perimental evidence for the existence of oscillation,
neutrinos clearly have non-zero mass and the three
mass states are slightly different. Although exact
neutrino masses have not been determined, we do
know that there are two possible mass hierarchies:
m1 < m2 < m3, which is called the normal hierar-
chy or m3 < m2 < m1 which is called the inverted
mass hierarchy.

3. If there was no lepton mixing, all off-diagonal terms
in the PMNS matrix would be zero, and at least
one term in U∗αiUβiUαjU

∗
βj would be zero for i > j.

Then Eq. (11) would reduce to P (να → νβ) = δαβ .
However, the existence of flavour change implies
that lepton mixing occurs.

4. As the entire calculation was done in vacuum, the
flavour change cannot arise from the interaction of
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FIG. 1. A qualitative plot of the oscillation and retention
probabilities for an electron neutrino to either change flavours
into tau and muon neutrinos, or retain its flavour. The prob-
abilities are plotted as a function of L/E (for long-range dis-
tances). Plot constructed using parameter values sourced
from [10]

neutrinos with matter. Therefore, oscillations are
a completely inherent phenomenon that arise from
the time evolution of the neutrino itself.

The survival probability is obtained by substituting α
in place of β in Eq. (11). Therefore

P (να → να) = 1− 4
∑
i>j

|UαiUαj |2 sin2

(
∆m2

ijL

4E

)
(12)

because U∗αiUβiU
∗
αjUαj is real for α = β.

III.3. The Two-Neutrino Case

While a detailed description of neutrino oscillations ne-
cessitates the use of the three-neutrino formula, for most
practical purposes the two-neutrino case is sufficient. In
this case, only two mass eigenstates ν1 and ν2 are signifi-
cant. The PMNS matrix can be parameterised with just
one mixing angle (two neutrino case does not require the
CP violation phase [9]) θ. Therefore,

U =

(
Ue1 Ue2
Uµ1 Uµ2

)
=

(
cos θ sin θ
− sin θ cos θ

)
(13)

From Eq. (13) we see that 4U∗α2Uβ2Uα1U
∗
β1 =

−4 sin θ cos θ cos θ sin θ = − sin2 2θ. Eq. (11) is subse-
quently simplified to produce

P (να → νβ) = δαβ − sin2 2θ sin2

(
∆m2L

4E

)
(α 6= β)

(14)
where ∆m2 = m2

21 = m2
2 −m2

1.
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FIG. 2. A plot of the oscillation and retention probabilities
for the process νµ ↔ ντ as a function of L/E (for long-range
distances) for the two-neutrino approximation. The probabil-
ity oscillates as the neutrino travels in space. Plot constructed
using parameter values sourced from [10]

IV. SYMMETRIES

Symmetries are physical quantities of a system that
remain unchanged under a certain transformation. Some
well-known examples of symmetries are the symmetry of
a geometrical shape such as sphere, or the the fact that
the speed of light remains unchanged in any reference
frame. Symmetries are also intimately connected to con-
servation laws. From Noether’s theorem, it can be said
that every conservation law is associated with a symme-
try of the system.
While translational and rotational invariance lead to
symmetries of their own which form an important part
of atomic and molecular physics, particle physics is pri-
marily concerned with three important symmetries of the
Hamiltonian — parity, charge conjugation, and time re-
versal.

IV.1. Parity Symmetry

First introduced by Wigner in 1927 [11], parity refers to
the behaviour of a system under a spatial transformation

r→ −r (15)

(in essence, a spatial reflection). This transformation is
carried out by the parity operator π̂. For a wave function
〈r|ψ〉 = ψ(r), then under the parity transformation,

π̂ψ(r) = πψ(−r) (16)

The eigenvalues of the parity operator (π = ±1) are
called the intrinsic parity of of the system.
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FIG. 3. A plot of the survival probability for an electron neutrino as a function of its energy (in MeV) for L = 1800 km,
∆m2 = 7.0× 10−5 eV2, and sin2 2θ = 0.84. Plot constructed using parameter values sourced from [10]

IV.2. Charge Conjugation

Charge conjugation is the transformation where very
particle is replaced by its antiparticle. Consider two
classes of particles: a, particles that do not have dis-
tinct antiparticles, and b, particles that do. The action
of the charge conjugation transformation by the operator
Ĉ can be summarised as follows

Ĉ |a, ψa〉 = Ca |a, ψa〉 (17a)

Ĉ |b, ψb〉 = Cb
∣∣b̄, ψ−b 〉 (17b)

Like the parity operator, the charge conjugation oper-
ator has eigenvalues C = ±1, called the C-parities.

IV.3. Time Reversal

Time-reversal symmetry is defined as invariance under
the transformation

t→ −t (18)

This symmetry is violated by weak interactions. Un-
like charge conjugation and parity, this symmetry has no
associated quantum number.

IV.4. CPT Symmetry

These three symmetries are fundamentally important
in the field of particle physics. Although each of
them has been broken in the present day universe,
the Standard Model predicts that a combination of
the three (that is the simultaneous application of all
three transformations) must be a symmetry [12]. This
combined symmetry is called the CPT symmetry. Since
CPT as a whole is a symmetry, the breaking of any one
must mean that the combination of other two is also
broken.

One such violation is called the CP violation which
is the violation of the combination of charge conjuga-
tion and parity. In the further section, we will cover the
application of CP violation to the process of neutrino
oscillations.

IV.5. CP Violations in Neutrino Oscialltions

Neutrinos, like all elementary particles, have a spin.
As long as it isn’t zero, the spin of a particle can either
be right-handed or left-handed. This handedness can
be determined by the direction in which your fingers
curl if the thumb is placed parallel to the direction of
propagation of the particle.

Neutrinos violate P-symmetry: Now, inter-
estingly, all neutrinos we have observed so far are
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left-handed. No right-handed neutrinos have been
found. Therefore, if you mirrored the entire universe,
the laws of physics would change as there is no corre-
sponding neutrino of opposite chirality. This constitutes
a violation of P-symmetry.

Neutrinos violate C-symmetry: Now, let’s look at
a left-handed neutrino (since that’s the only one we have
ever observed). If you perform a parity transformation,
you would expect to get a left-handed antineutrino.
But there is one problem — left-handed antineutrinos
have never been observed. So there is a violation of
C-symmetry as well!

Therefore, it was important to look at CP symmetry
as a whole. If you did that, a left-handed neutrino
would produce a right-handed antineutrino under a
CP transformation — something that does exist. This
was assumed to patch up the asymmetry that was
observed — until something more serious was found:
evidence of CP violation itself. CP violation was found
in phenomena such as Kaon decay or quark oscillations2.
This violation was also incorporated into the quark
mixing model.

CP violation is yet to be observed in neutrinos, but
it is hypothesised that this asymmetry would manifest
in neutrino oscillations. In fact, this has already been
incorporated into the theory of the oscillations through
the mixing model. As it was mentioned earlier, the
PMNS matrix was parameterised using an angle denoted
by δCP which was called the CP-violating phase. If
δCP is not zero (or 180◦), then CP violation exists in
neutrino oscillations. The value of this phase signifies
the extent of violation and affects how the neutrinos
would oscillate between the three flavour states [13].

We will now discuss the probabilities of CP violation
in the case of neutrino oscillations. Before we begin, let
us summarise the effects of the C, P and T discrete sym-
metries on the oscillation probabilities.

P (να → νβ)
CP−−→ P (ν̄α → ν̄β) (19a)

T−→ P (νβ → να) (19b)

CPT−−−→ P (ν̄β → ν̄α) (19c)

If we assume CPT conservations, that is

P (να → νβ) = P (ν̄β → ν̄α) (20)

(since the Standard Model predicts this), then the CP
and T asymmetries in neutrino oscillations are equal.
This can be quantified using a parameter Aαβ

Aαβ =
P (να → νβ)− P (ν̄α → ν̄β)

P (να → νβ) + P (ν̄α → ν̄β)

=
P (να → νβ)− P (νβ → να)

P (να → νβ) + P (νβ → να)

(21)

Futhermore, there would be no CP violation in
disappearance experiments, that is, να → να as
P (να → νβ) = P (ν̄α → ν̄β).

It is often convenient to introduce a quantity ∆Pαβ ,
called the CP asymmetry, given by

∆Pαβ = P (να → νβ)− P (ν̄α → ν̄β) (22)

Performing some algebra on Eq. (11) and using Eq.
(20), we find that this is nothing but twice the odd part
of Eq. (11). We obtain that

∆Pαβ = 16J
∑
γ

εαβγ sin

(
∆m2

21L

4E

)
sin

(
∆m2

31L

4E

)
sin

(
∆m2

32L

4E

)
, where J = Im[U∗αiUβiUαjU

∗
βj ] (23)

where εαβγ is the Levi-Civita symbol ( = 1 for an even
permutation of (e, µ, τ)). The quantity J is called the
Jarlskog invariant which is a measure of the CP viola-
tion. Using the standard parameterisation of the PMNS
matrix, we obtain [14]

J =
1

8
cos θ13 sin 2θ12 sin 2θ13 sin 2θ23 sin δCP (24)

This imposes some conditions on the parameters for
the existence of CP violation in neutrino oscillations. It

2 For more details, see the Cabibo-Kobayashi-Maskawa matrix.

is required that the three mixing angles θij be nonzero,
and that the CP violating phase δCP lies between 0 and
π. Furthermore, we also need the mass differences ∆m2

ij

to be non-vanishing. Consequently, all neutrino masses
would have to be different. These conditions can be sum-
marised below

θij 6= 0; δCP 6= 0, π; m1 6= m2,m2 6= m3,m1 6= m3 (25)

Eq. (23) tells us some additional information too. As

the effect of CP violation is proportional to sin
(

∆m2
21L

4E

)
,

this effect can only be observed in experiments that are
sensitive to subdominant oscillations governed by ∆m2

21.
Therefore, neutrino experiments that look for CP viola-
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tions, like the DAEδALUS IsoDAR involve long distances
(of the order of several hundred kilometres), intense neu-
trino beams and huge detectors.

V. CONCLUSION

In this work, we have looked at the phenomenon of
neutrino oscillations, and studied the reasons for its oc-
currence. We have then derived the probability for a neu-

trino to oscillate between flavour states in both the two-
and three- neutrino case. From this probability, we made
a few observations and remarks about the neutrino itself.
Next, we introduced the concept of discrete symmetries
and looked at their relevance in quantum mechanics and
particle physics. We also covered the concept of CPT in-
variance and CP violation. We connected CP violations
to neutrino oscillations and quantified the CP asymmetry
in terms of the Jarlskog invariant.

Appendix A: Derivation of P (να → νβ)

In this section, we cover the derivation of Eq. (11) at length. We know that the basis transformation relations
between the flavour and mass eigenstates are given by the PMNS matrix. These have been summarised below for
recapitulation.

|να〉 =
∑
i

U∗αi |νi〉

|νi〉 =
∑
α

Uαi |να〉

We write Eq. (10) again,

P (να → νβ) =

∣∣∣∣∣∑
i

U∗αiUβi exp

(
−im2

iL

2E

)∣∣∣∣∣
2

=

[∑
i

U∗αiUβi exp

(
−im2

iL

2E

)]∑
j

U∗αjUβj exp

(
−im2

jL

2E

)∗

=
∑
i

∑
j

U∗αiUβiUαjU
∗
βj exp

(
i∆m2

jiL

2E

)

=
∑
i

U∗αiUβiUαiU
∗
βi +

∑
i6=j

U∗αiUβiUαjU
∗
βj exp

(
i∆m2

jiL

2E

)

We know that

eix = cosx+ i sinx

= 1− 2 sin2 x

2
+ i sinx

Therefore,

P (να → νβ) =
∑
i

U∗αiUβiUαiU
∗
βi +

∑
i6=j

U∗αiUβiUαjU
∗
βj exp

(
i∆m2

jiL

2E

)

=
∑
i

U∗αiUβiUαiU
∗
βi +

∑
i6=j

U∗αiUβiUαjU
∗
βj − 2

∑
i6=j

U∗αiUβiUαjU
∗
βj sin2

(
∆m2

jiL

4E

)

+ i
∑
i 6=j

U∗αiUβiUαjU
∗
βj sin

(
∆m2

jiL

2E

)
= P1 + P2 − 2P3 + iP4 (A1)
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First, we consider the terms P1 and P2 from (A1).

P1 + P2 =
∑
i

U∗αiUβiUαiU
∗
βi +

∑
i 6=j

U∗αiUβiUαjU
∗
βj

=
∑
i,j

U∗αiUβiUαjU
∗
βj

=

(∑
i

U∗αiUβi

)∑
j

UαjU
∗
βj


=

∣∣∣∣∣∑
i

UαiU
∗
βj

∣∣∣∣∣
2

= δαβ (A2)

Where δαβ is the Kronecker delta function.

For P3 and P4 from (A1),

P3 =
∑
i 6=j

U∗αiUβiUαjU
∗
βj sin2

(
∆m2

jiL

4E

)

=
∑
i>j

U∗αiUβiUαjU
∗
βj sin2

(
∆m2

ijL

4E

)
+
∑
i<j

U∗αiUβiUαjU
∗
βj sin2

(
∆m2

jiL

4E

)

=
∑
i>j

U∗αiUβiUαjU
∗
βj sin2

(
∆m2

ijL

4E

)
+
∑
i>j

U∗αjUβjUαiU
∗
βi sin2

(
∆m2

ijL

4E

)

=
∑
i>j

sin2

(
∆m2

ijL

4E

)[
(U∗αiUβiUαjU

∗
βj) + (U∗αiUβiUαjU

∗
βj)
∗]

= 2
∑
i>j

Re(U∗αiUβiUαjU
∗
βj) sin2

(
∆m2

ijL

4E

)
[z + z∗ = 2Re(z)] (A3)

P4 =
∑
i 6=j

U∗αiUβiUαjU
∗
βj sin

(
∆m2

jiL

2E

)

= −
∑
i>j

U∗αiUβiUαjU
∗
βj sin

(
∆m2

ijL

2E

)
+
∑
i<j

U∗αiUβiUαjU
∗
βj sin

(
∆m2

jiL

2E

)

= −
∑
i>j

U∗αiUβiUαjU
∗
βj sin

(
∆m2

ijL

2E

)
+
∑
i>j

U∗αjUβjUαiU
∗
βi sin

(
∆m2

ijL

2E

)

=
∑
i>j

sin

(
∆m2

ijL

2E

)[
(U∗αiUβiUαjU

∗
βj

)∗ − (U∗αiUβiUαjU∗βj)]
= −2i

∑
i>j

Im
(
U∗αiUβiUαjU

∗
βj

)
sin

(
∆m2

ijL

2E

)
[z∗ − z = −2Im(z)] (A4)

Substituting (A2), (A3) and (A4) in (A1), we get:

P (να → νβ) = δαβ − 4
∑
i>j

Re[U∗αiUβiUαjU
∗
βj ] sin2

(
∆m2

ijL

4E

)
+ 2

∑
i>j

Im[U∗αiUβiUαjU
∗
βj ] sin

(
∆m2

ijL

2E

)
(A5)



9

REFERENCES

[1] B. R. Martin, Nuclear and Particle Physics: An Introduction, 2nd ed. (Wiley, 2008).
[2] minutephysics, Quantum SHAPE-SHIFTING: Neutrino Oscillations, https://www.youtube.com/watch?v=7fgKBJDMO54.
[3] B. Pontecorvo, Mesonium and antimesonium, Sov. Phys. JETP 6, 429 (1958).
[4] B. Pontecorvo, Neutrino experiments and the problem of conservation of leptonic charge, Sov. Phys. JETP 26, 165 (1968).
[5] The Nobel Foundation, The Nobel Prize in Physics 2015, https://www.nobelprize.org/prizes/physics/2015/

press-release/, Accessed: 2020-10-03.
[6] Z. Maki, M. Nakagawa, and S. Sakata, Remarks on the unified model of elementary particles, Progress of Theoretical

Physics 28, 870 (1962).
[7] J. W. Valle, Neutrino physics overview, in Journal of Physics: Conference Series, Vol. 53 (IOP Publishing, 2006) p. 473.
[8] S. Eidelman, K. Hayes, K. Olive, M. Aguilar-Benitez, C. Amsler, D. Asner, K. Babu, R. Barnett, J. Beringer, P. Burchat,

et al., Review of particle physics, Physics letters B 592, 1 (2004).
[9] B. Kayser, Neutrino Physics, arXiv e-prints , hep-ph/0506165 (2005), arXiv:hep-ph/0506165 [hep-ph].

[10] K. A. Olive et al., Review of particle physics, Chinese physics C 38, 090001 (2014).
[11] E. Wigner, Group theory and its application to the quantum mechanics of atomic spectra, Vol. 5 (Elsevier, 2012).
[12] A. Kostelecky, The Status of CPT, arXiv e-prints , hep-ph/9810365 (1998), arXiv:hep-ph/9810365 [hep-ph].
[13] DAEDALUS IsoDAR, CP Violation, https://www.nevis.columbia.edu/daedalus/motiv/cp.html, Accessed: 2020-10-30.
[14] C. Giganti, S. Lavignac, and M. Zito, Neutrino Oscillations: the rise of the PMNS paradigm, Progress in Particle and

Nuclear Physics 98, 1 (2018).
[15] S. Mondal, Physics of Neutrino Oscillation, arXiv e-prints , arXiv:1511.06752 (2015), arXiv:1511.06752 [physics.gen-ph].


