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Abstract

The time series of financial fluctuations show complexity and chaos at different lev-
els. In this paper we look at the inventory changes of wheat in the global market in the
period between 1974 and 2012 and see how these fluctuations follow a nonlinear deter-
ministic process. Using small sliding time windows, we find that the Duffing oscillator
is able to model this process to a good degree of accuracy. This is mainly because there
seems to be a cubic dependence of price changes on changes in stock. We also find that
there is non-chaotic behaviour in this model.

1 Introduction

The study of chaotic motion in nonlinear systems has been a popular area of research dur-
ing the last few decades. Many investigations have been performed on different nonlinear
chaotic systems to understand the complex behavior of these systems. Three of the funda-
mental forced oscillators, Duffing, Van der Pol, and Rayleigh oscillators, have been exten-
sively examined since lots of dynamic characteristics embedded in the physical systems
can be realized from these three systems. Among them, forced Duffing oscillator is the
most useful nonlinear dynamical systems, which is considered as a prototype model for
various physical and engineering problems such as dynamics of a buckled elastic beam,
particle in a forced double well, particle in a plasma, and a defect in solids.
Here we use the Duffing Oscillator Model to examine fluctuations of stocks of a particu-
lar commodity (here wheat). First we will analyze the various oscillator models and then
eventually come up with the Duffing Oscillator Model. The reason for using this model
has been thoroughly explained in the paper. The first section of this paper deals with
mathematical modelling while the second part explains in detail the application of Duff-
ing Oscillator in markets and other fields of economics in general. The third part is the
analysis of data obtained from the original paper. All the analysis has been done using our
knowledge of Nonlinear Dynamics as taught to us this semester.
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2 Problem Definition and Mathematical Modelling

Nonlinear dynamic models have a long and venerable history in economic analysis, both
theoretical and empirical. The objective here is to come up with a dynamical system which
can closely mimic a fluctuation in supply and demand in a typical market.
In order to understand how a market works a step-by step approach has been taken so to
better understand the mathematical model we are going to use in our study.
The first simple model will do some violence to the known strong inter-dependencies be-
tween markets and will not stress the role played by prices as equilibrating market forces.
However, its very simplicity will enhance the ideas to be illustrated. Make note of the
following symbols:

• X denotes the excess demand for a given commodity at a given point in time t

• Ẋ denotes the time derivative of X, it is the rate of excess demand

• S denotes the total stock size of the market(S is assumed to be fixed for the purposes
of this analysis as it determines the scale within which the effect of excess demand)

• Ẍ is the acceleration in the change in excess demand; Ẍ is a continuously differen-
tiable function of time t.

The basic idea here is that if economic forces are to react to a exogenous shock in excess
demand in order to restore equilibrium, then to go to a zero velocity of excess demand to
some non-zero velocity, the acceleration must first be non-negative to achieve this result.

2.1 Simple Harmonic Oscillator

Price(P ) is an indicator function that translates demand and supply relationships into an
excess demand function. If demand increases some economic force will act in the opposite
direction to maintain equilibrium. The formulation is as follows:

Ṗ = kẊ (1)

Therefore,
P = k0 + kX (2)

Where k and k0 are constants to be determined by economic conditions.
If there has been displacement in equilibrium by an amount X then restoring force is as-
sumed to be equal to −σX , where σ is the ’coefficient of stiffness’ in the restoring force.
Mathematically this can be expressed as:

Ẍ = −σX (3)
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or,
Ẍ + σX = 0 (4)

Note how this is similar simple harmonic motion. However, this model is very simple for
practical use and cant be applied to mimic the market.

2.2 Forced Damped Oscillator

As our first step towards approaching reality, let us modify the equation.

Ẍ + βẊ + σX = 0 (5)

Here −βẊ represents friction in the system.
Supose, now we consider the effect of a series of random shocks in the market system, say
a sinusoidal path of shocks to the market system. Then we can define our system as:

Ẍ + βẊ + σX = δcos(ωt) (6)

Where ω is the frequency of the ’force equation’ and δ is an appropriate constant.

2.3 Van der Pol Oscillator

Now let us move towards a nonlinear model.

• Let the retarding forced be modelled as: −(σ1X + σ3X
3)X

• Let the damping force be modelled as: −
[
β0

(
1−

(
X
X0

)2)]
Ẋ

The resulting equation is the Van der Pol equation:

Ẍ +

[
β0

(
1−

(
X

X0

)2
)]

Ẋ + (σ1X + σ3X
3)X = 0 (7)

Where β0 > 0; σ1 > 0; σ3 > 0 or < 0

The economic interpretation is that for relatively small amounts of excess demand the
restoring force is offset by the velocity term, but that if the excess demand gets to be too
large, then the usual process applies
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2.4 Duffing Oscillator

Now we are prepared to establish a model that can closely predict market behavior. Turns
out that this model called ’The Duffing Oscillator model’ is very well known in Physics. It
basically describes the dynamics of a point mass in a double well potential. It is formulated
as

Ẍ + βẊ + σX + σ3X
3X = δcos(ωt) (8)

Or more generally,
Ẍ + β

′
Ẋ + σ1

′
X + σ3

′
X3X = δ

′
cos(ωt) (9)

Here, the cubic term is responsible for nonlinearity of the system.

3 Duffing Oscillator for Inventory Dynamics

Now that we have established our our model we are going to implement it. Dynamics of
supply and demand tends to be complex in explaining the observed inventory volatility.
External forces (like policy) and other disturbances play a major role in the dynamics of
supply and demand
The commodity production cycle consists of two negative feedback loops, consumption
and production. Say, if the inventories of a commodity fall the price of the commodity
increases and vice-versa. Thus the price-stock relation is a push-pull effect in which price
change acts as a restoring force driven by oscillations of the inventory about the reference
level. In simple words the market responds in a way such that equilibrium is retained. The
rate of change in price change of a commodity can be modelled in a nonlinear way.

ṗ = α1x+ α2x
3 α1α2 < 0 (10)

Here ṗ represents the price change per year. The dynamic of production tells us that x ≈
P (p, x)− C(p, x), also ẋ ∝ −x, therefore

ẋ = r(P (p, x)− C(p, x)) (11)

P, C represent the production and consumption functions respectively and r ≤ 0 is the
constant of proportionality. Eqs.(10), (11) represent the coupled feed-back loops of com-
modity of oscillations.
The external force which has a certain frequency is responsible for the eventual stabiliza-
tion of fluctuations caused in the market. The force may be a policy intervention in general,
but there are other forces at play too. Let us suppose that the force is of the form a sin(ωt).
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At time t0 = nπ the force is zero; n = 0, 1, 2, 3.....

Superposition in Eq.(11) leads to the following

ẋ = rP (p(t), x(t))− C(p(t), x(t)) + a sin(ωt) (12)

Taking the time derivative of Eq.(12) gives

ẍ = r

(
∂P

∂p
ṗ+

∂P

∂x
ẋ− ∂C

∂p
ṗ− ∂C

∂x
ẋ+ aω cos(ωt)

)
(13)

Let:

• δ = −r ∂(P−C)
∂x

• β = −rα1
∂(P−C)

∂x

• α = −rα2
∂(P−C)

∂x

• γ = raω

Now substituting in Eq.(13) we get,

ẍ+ δẋ+ βx+ αx3 = γcos(ωt) (14)

Clearly Eq.(14) is the Duffing oscillator equation, an example of damped physical oscilla-
tions which may or may not be chaotic. This is one of the main questions to be answered. Is
the behaviour of the system chaotic or not? It all depends on the parameters δ, β, α and λ.
Here δ represents extent of economic damping; β, γ represent nonlinear price-stock push
and pull respectively; γ represents the amplitude of the external force.

Now we are in a position to analyze the behaviour of inventory dynamics. Let ẋ = y, t = z

and ẍ = y, then we can write Eq.(14) as a 3D system

ẋ = y (15)

ẏ = −δy − βx− αx3 + γcos(ωt)

ż = 1

Note that δ represents economic damping, β > 0 is the measure of push towards equilib-
rium, whereas α < 0 is the pull factor, and γ is the amplitude of force.
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3.1 Analysis

In a typical Duffing Equation potential is given by V = −x2

2 + x4

4 and ∂V
∂x = −x+ x3. Here

the partial derivative of potential is given by change in price as in Eq.(10)

ṗ = α1x+ α2x
3 α1α2 < 0

α1 < 0, α2 > 0. Which subsequently makes β > 0 and α < 0.

The economic damping term is defined as δ = −r ∂(P−C)
∂x . δ < 0 signifies that amplitude

oscillations increase with time. This corresponds to a situation when a rise in inventory is
accompanied by a reduction in the gap between production and consumption due to spec-
ulation about price rise. On the other hand if δ > 0 the oscillations decrease in amplitude
with time. In a duffing oscillator model δ < 0 is a signature of chaos.

The following is the data obtained for quarterly fluctuations of stocks of wheat during the
period (1974-1999) which correspond to 55 points on the x axis (0 denoting 1974 and 55
denoting 1999).

Seeing the behavior of the graph we can presume that the damping term is close to zero
other wise the oscillations tend to decrease after a while which isn’t the case. Therefore, for
our model we are going to assume δ as very close to zero. However, this method can only
be applied to model local behaviour and not global behaviour of change in stocks. The
author of the original paper used sliding time windows calculate the parameters using the
time-series estimation method. As this is beyond the scope of this course we shall tackle
this problem differently.
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This graph was obtained for δ = 0.01 for the first five years of data. The other parame-
ters were set according to a typical duffing oscillator model. Note that this graph is just
presented to show that the behavior of our proposed duffing oscillator model is the same
as the set of data observed. To obtain a full graph we need to obtain different parame-
ter values for different time windows. One parameter however remains almost the same,
δ ≈ 0.
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3.2 Results

The following graphs were obtained for δ = 0.1, α = 2.5, β = −1, γ = 0.17, ω = 0.314 .
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The following is the bifurcation diagram.

γ = 0.17 does not lie in the chaotic range (Bifurcation Diagram) so we can safely say that
behavior is not chaotic.
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3.3 Limitations of the approach

The approach taken to model oscillations of change of stocks with respect to time has some
drawbacks. The method used here can only approximate the behaviour of oscillations
for small time periods as the value of parameters differs for all sliding time windows.
More accurate result is obtained if one keeps shrinking the size of time windows. More
accurate frequency is obtained for smaller time windows. The author of the paper has
used advanced numerical computations such as Fourier time series estimation to model
data which is beyond the scope of the course. Therefore a different approach was taken to
produce the same result.

4 Discussion and Conclusions

The oscillatory behavior of quarterly fluctuations of wheat inventories in the global market
exhibits a complex non-random character. The contribution of the present study lies in
establishing that the deterministic Duffing Oscillator is able to explain the dynamics of
inventory fluctuations of wheat for a given time period, with reasonable credibility. This
stems mainly from the evidence of a cubic dependence of changes in price on those of
stocks. Also, it facilitates a better prediction by economic agents.

As is observed for δ ≈ 0 non chaotic behavior is observed. For δ < 0 the situation is
such that a rise in inventory is accompanied by a reduction in the gap between production
and consumption due to speculation about price rise. But the graph obtained tells us that
delta values remain very close to zero throughout the whole time scale otherwise a large
negative delta value would lead to the oscillations blowing up in time, on the other hand
negative delta values will result in a decay in oscillations. None of these two is observed
therefore it can be safely said that delta values are always nearly zero for different time
windows signifying non-chaotic behaviour.

10



Appendices

All the graphs and numerical data have been computed using Python in Jupyter Notebook.
A copy of the Jupyter Notebook has also been attatched along with this report for reference.

Code:

Behavior of change of stocks vs t, Phase space and plane

x vs t ( Behavior of change of s to c ks )
from scipy . i n t e g r a t e import odeint

import datetime
import numpy as np
import sc ipy as sp
import sc ipy . f f t p a c k
import pandas as pd
import m a t p l o t l i b . pyplot as p l t
%m a t p l o t l i b i n l i n e

alpha = 2 . 5
beta = −1
gamma = 0 . 1 7
d e l t a = 0 . 1
omega = 0 .314

def model (w, t ) :
dxdt = w[ 1 ]
dydt = −d e l t a ∗w[ 1 ] − beta ∗w[ 0 ] − alpha∗w[ 0 ]∗∗3 + gamma∗np . cos ( omega∗ t )
dzdt = 1
dwdt = [ dxdt , dydt , dzdt ]
re turn dwdt

# i n i t i a l condi t ions
w0 = [−15 ,0 ,0]

# time points
xlim=5
t = np . l i n s p a c e ( 0 , xlim , 2 0 )

# solve ODE
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w = odeint ( model , w0, t )

# o r i g i n a l graph
data = pd . read_csv ( ’/home/adhmgn/snap/ l i b r e o f f i c e /177/ s t o ck s . csv ’ )
df = pd . DataFrame ( data , columns= [ ’ year ’ , ’ ch_stocks ’ ] )
time = data . year
s to c k s = data . ch_stocks

# p l o t t i n g
f i g = p l t . f i g u r e ( f i g s i z e = ( 1 0 , 1 5 ) , dpi =260)

p l t . subplot ( 3 , 1 , 1 )
p l t . axhl ine ( y=−5,lw = 0 . 5 , c o l o r = ’ gray ’ )
p l t . axv l ine ( lw = 0 . 5 , c o l o r = ’ gray ’ )
p l t . p l o t ( t ,w[ : , 0 ] , l a b e l = ’ $x$ vs t ’ )
# p l t . p l o t ( time , s to c ks )
# p l t . xlim ( 5 0 , 1 0 0 )
p l t . x l a b e l ( ’ time ’ )
p l t . y l a b e l ( ’ $x$ ’ )
p l t . legend ( l o c = ’ best ’ )

p l t . show ( )

from mpl_ too lk i t s . mplot3d import Axes3D

def lorenz ( x , y , z ) :
’ ’ ’
Given :

x , y , z : a point of i n t e r e s t in three dimensional space
s , r , b : parameters def in ing the lorenz a t t r a c t o r

Returns :
x_dot , y_dot , z_dot : values of the lorenz a t t r a c t o r ’ s p a r t i a l
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d e r i v a t i v e s a t the point x , y , z
’ ’ ’
x_dot = y
y_dot = −d e l t a ∗y − beta ∗x − alpha∗x∗∗3 + gamma∗np . cos ( omega∗z )
z_dot = 1
return x_dot , y_dot , z_dot

dt = 0 . 0 1
num_steps = 100000

# Need one more f o r the i n i t i a l values
xs = np . empty ( num_steps + 1)
ys = np . empty ( num_steps + 1)
zs = np . empty ( num_steps + 1)

# Set i n i t i a l values
xs [ 0 ] , ys [ 0 ] , zs [ 0 ] = ( 0 . , 1 . , 1 . 0 5 )

# Step through " time " , c a l c u l a t i n g the p a r t i a l d e r i v a t i v e s a t the current point
# and using them to es t imate the next point
f o r i in range ( num_steps ) :

x_dot , y_dot , z_dot = lorenz ( xs [ i ] , ys [ i ] , zs [ i ] )
xs [ i + 1] = xs [ i ] + ( x_dot ∗ dt )
ys [ i + 1] = ys [ i ] + ( y_dot ∗ dt )
zs [ i + 1 ] = zs [ i ] + ( z_dot ∗ dt )

# P l o t
f ig , ax = p l t . subplots ( 1 , 1 , dpi =360)
ax . p l o t ( xs , ys , lw = 0 . 5 )
ax . s e t _ x l a b e l ( " x Axis " )
ax . s e t _ y l a b e l ( " y Axis " )
ax . s e t _ t i t l e ( " x−y plane " )

f i g = p l t . f i g u r e ( f i g s i z e = ( 5 , 5 ) , dpi =360)
ax = f i g . gca ( p r o j e c t i o n = ’3d ’ )
ax . p l o t ( xs , ys , zs , lw = 0 . 5 )
ax . s e t _ x l a b e l ( " X Axis " )
ax . s e t _ y l a b e l ( " Y Axis " )
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ax . s e t _ z l a b e l ( " Z Axis " )
ax . s e t _ t i t l e ( " Phase Space " )

p l t . show ( )

Bifurcation and Poincare Map

# Program 09 c : Phase p o r t r a i t and Poincare s e c t i o n of a nonautonomous ODE.
# See Figure 9 . 1 1 ( b ) .

import m a t p l o t l i b . pyplot as p l t
import numpy as np
from scipy . i n t e g r a t e import odeint
xmin , xmax = −2, 2
ymin , ymax = −2, 2

gamma = 0 . 1 7

def dx_dt ( x , t ) :
re turn [ x [ 1 ] , x [ 0 ] − k∗x [ 1 ] − x [ 0 ]∗∗3 + gamma∗np . cos ( omega∗ t ) ]

# The Poincare s e c t i o n .
f ig , ax = p l t . subplots ( f i g s i z e =(6 , 6 ) )
t = np . l i n s p a c e ( 0 , 4000 ∗ (2∗np . pi ) / omega , 16000000)
xs = odeint ( dx_dt , [ 1 , 0 ] , t )

x = [ xs [4000∗ i , 0 ] f o r i in range ( 4 0 0 0 ) ]
y = [ xs [4000∗ i , 1 ] f o r i in range ( 4 0 0 0 ) ]

ax . s c a t t e r ( x , y , c o l o r = ’ blue ’ , s = 0 . 1 )
p l t . x l a b e l ( ’ x ’ , f o n t s i z e =15)
p l t . y l a b e l ( ’ y ’ , f o n t s i z e =15)
p l t . t ick_params ( l a b e l s i z e =15)
p l t . t i t l e ( ’ The Poincare sec t ion ’ )
p l t . show ( )
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